Interactions between synchrotron radiation X-ray and biological tissues - theoretical and clinical significance.

نویسندگان

  • Heyu Chen
  • Xin He
  • Caibin Sheng
  • Yingxin Ma
  • Hui Nie
  • Weiliang Xia
  • Weihai Ying
چکیده

Synchrotron radiation (SR) X-ray has great potential for its applications in both diagnosis and treatment of diseases, due to its characteristic properties including coherence, collimation, monochromaticity, and exceptional brightness. Great advances have been made regarding potential medical applications of SR X-ray in recent years, particularly with the development of the third generation of SR light sources. However, multiple studies have also suggested damaging effects of SR X-ray on biological samples ranging from protein crystals to cells and biological tissues. It has become increasingly important to conduct comprehensive studies on two closely related topics regarding SR X-ray in medical applications: The safety issues regarding the medical applications of SR X-ray and the fundamental mechanisms underlying the interactions between SR X-ray and biological tissues. In this article, we attempted to provide an overview of the literatures regarding these two increasingly significant topics. We also proposed our hypothesis that there are significant differences between the biological tissue-damaging mechanisms of SR X-ray and those of normal X-ray, due to the characteristic properties of SR X-ray such as high dose rate. Future studies are warranted to test this hypothesis, which may profoundly improve our understanding regarding the fundamental mechanisms underlying the interactions between light and matter. These studies would also constitute an essential basis for establishing the safety standard for the medical applications of SR X-ray.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of the Applications of Synchrotron Radiation in Archaeological Sciences

The scientific research regarding investigation, characterization and protection of the archeological specimens is manifested through a notable participation of multidisciplinary subjects and experts, scientists and archeometrists. One of the main principals which are considered by archaeometrists in the study of the precious specimens is the utilizing nondestructive methods. As an example, in ...

متن کامل

Introducing an Optimized Method for Obtaining X-ray Diffraction Patterns of Biological Tissues

Introduction Individual X-Ray diffraction patterns of biological tissues are obtained via interference of coherent scattering with their electrons. Many scientists have distinguished normal and cancerous breast tissue, bone density, and urinary stone types using the X-Ray diffraction patterns resulting from coherent scattering. The goal of this study was to introduce an optimized method for obt...

متن کامل

Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods

Background: Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo (MC) codes are the best...

متن کامل

Detection of breast cancer using non-invasive X-ray diffraction technique of hair: A preliminary study

Background: An early diagnosis of breast cancer relates directly to an accurate treatment plan and strategy. Early detection of breast cancer before its development would be a significant reduction of morbidity and mortality rates. The aim of this preliminary study is to investigate the sensitivity of Wide Angle X-ray diffraction (WAXRD) method on women hair samples of healthy and breast cancer...

متن کامل

In situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks

Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of physiology, pathophysiology and pharmacology

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2011